

Minimal Positive Polynomials*

JAMES E. EATON†

Summary—A proof is given of a purely mathematical theorem on the polynomial of lowest degree with positive coefficients having a prescribed root of unity as a multiple root.

H. J. Riblet has conjectured the theorem below. In the preceding paper,¹ he applies his theorem to optimum impedance transformer design.

THEOREM

THE polynomial $(x+1)^n$ is the unique monic polynomial of lowest degree with non-negative coefficients that has $e^{i\pi/r}$ as an n -fold root.

The degree of the minimal positive polynomial is at most nr . Let the polynomial be

$$f(x) = a_{nr}x^{nr} + a_{nr-1}x^{nr-1} + \dots + a_0.$$

If $n=1$, the imaginary part of $f(e^{i\pi/r})$, of necessity zero, may be written as

$$a_{r-1} \sin(r-1)\pi/r + \dots + a_1 \sin\pi/r.$$

Therefore, $a_k=0$, $0 < k < r$, for in this range $0 < \sin k\pi/r$. The real part, also zero, now reduces to $-a_r + a_0$. Hence, $f(x) = a_r(x^r + 1)$.

For larger n , note that if $e^{i\pi/r}$ is an n -fold root of $f(x)$ it is also a root of the first $n-1$ derivatives of $f(x)$. It is then a root of

$$F(x) = b_0f(x) + b_1xf'(x) + \dots + b_{n-1}x^{n-1}f^{(n-1)}(x)$$

* Manuscript received by the PGM TT, August 23, 1959; revised manuscript received, October 19, 1959.

† Queens College, Flushing, N. Y.

¹ H. J. Riblet, "A general theorem on an optimum stepped impedance transformer," IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, this issue, pp. 169-170.

for any choice of the constants b_i . $F(x)$ may be rewritten as

$$\begin{aligned} F(x) = & a_{nr}g(nr)x^{nr} + a_{nr-1}g(nr-1)x^{nr-1} + \dots \\ & + a_0g(0) \end{aligned} \quad (1)$$

where

$$\begin{aligned} g(k) = & b_0 + b_1k + b_2k(k-1) + \dots \\ & + b_{n-1}k(k-1) \dots (k-n+2). \end{aligned} \quad (2)$$

Although, in so far as $g(k)$ appears in (1), k is restricted to certain integral values. Eq. (2) defines $g(k)$ as a polynomial in k of degree $n-1$.

In (1) replace x by $e^{i\pi/r}$ and compute the imaginary part of $F(x)$ to obtain

$$\begin{aligned} a_{nr}g(nr) \sin nr\pi/r + a_{nr-1}g(nr-1) \sin (nr-1)\pi/r + \dots \\ + a_1g(1) \sin \pi/r = 0. \end{aligned} \quad (3)$$

The constants b_i in (2) may be chosen so that $g(k)$ has the same sign as $\sin k\pi/r$, $0 < k < nr$. Since a_k is not negative, this will imply that $a_k g(k) \sin k\pi/r$ also is not negative and hence, by (3), zero.

The proper behavior of $g(k)$ is readily obtained by requiring that $g(k)=0$, $k=r, 2r, \dots, (n-1)r$. This leads to a system of $n-1$ linear homogeneous equations in the n quantities b_0, b_1, \dots, b_{n-1} . The system has non-trivial solutions and one may be selected for which $g(1)$ is positive. Since $g(k)$ is of degree $n-1$, it has no other roots and $g(k) \sin k\pi/r \geq 0$. Therefore, $a_k=0$ if k is not divisible by r . Thus, $f(x)$ is a polynomial in x^r : $f(x) = h(x^r)$. It has the n -fold root $e^{i\pi/r}$ and $h(x)$ accordingly has the n -fold root $e^{i\pi}$. This shows that $h(x) = a_{nr}(x+1)^n$ and $f(x) = a_{nr}(x^r+1)^n$.